model <- keras$Model(vgg16$input,
vgg16$get_layer("flatten")$output)
final_conv_pred <- haku |>
keras$layers$Resizing(224L, 224L)() |>
torch$unsqueeze(0L) |>
keras$applications$vgg16$preprocess_input() |>
model$predict()
data.frame(features = 1:25088,
values = py_to_r(final_conv_pred[0])) |>
ggplot() +
geom_point(aes(features, values), alpha = 0.1)









